
Commodore

AMIGA

K·SEKA
EDITOR/ASSEMBLER

for
the

Commodore

AMIGA
Microcomputer

© COPYRIGHT 1986 ANDELOS SYSTEMS

-=

IMPORTANT

SERIAL NUMBER ______________ _

The serial number In your manual is the same 88 the serial number
on your registration card.

In order to obtain technical support it is essential to complete and
return the registration card enclosed In this package.

This serial number muat be quoted when in correspondence with the
technical support service.

Should you need to return your program disc in the unlikely event of a
disc failure or loading error please return the disc ONLY.

For major upgrades i.e. from version 1 to 2 BOTH the manual and the
disc'must be returned.

For minor upgrades I.e. from version 1.5 to 1.6 the disc ONLY should
be returned.

Kuma Computers Lid.
12 Horseshoe Park

Pangbourne
Berkshire RG8 7JW

Tel. No. (07357) 4335
Telex 846741 KUMA G

Fax. No. (07357) 4339

K-SEKA

AMIGA

CONTENTS

CHAPTER 1 INTRODUCTION 2

CHAPTER 2 EDITORS 7

CHAPTER 3 ASSEMBLER 14

CHAPTER 4 SYMBOLIC DEBUGGER 26

CHAPTER 5 LOADING AND SAVING 34

CHAPTER 5 LINKER 37

CHAPTER 7 TUTORIAL 41

APPENDIX A AMIGADOS 48

APPENDIX B
INSTRUCTION SET 55

APPENDIX Z
COMMAND SUMMARY 57

k-SEKA
c Copyright 1986 ANDELOS SYSTEMS

No part of
reproduced by
permission of

ISBN 07457 0182-5

this manual or program may be
any means w ithout p r ior w ritten

the Buther and the publisher.

This program is supplied in the belief that it
operates as specified, but Kuma Computers Ltd.
(the company) shall not be liable in any
circumstances whatsoever for any direct or
indirect loss or damage to property incurred or
suffered by the customer or any other person as a
result of any fault or defect in goods or
services supplied by the company and in no
circumstances shall the company be liable for
consequential damage or loss of profits (whether
or not the possibility thereof was separately
advised to it or reasonably foreseeabl e) arising
:rom the use or performance of such goods or
services . Compatibility with any other Assembly
Language systems is not implied or claimed.

Published by:­
Kuma Computers Ltd.,

12 Horseshoe Park,
Pangbourne,

Berks. RG8 7JH
U.K.

Telex: 8467'1 KUMA G Tel: 07357 4335

___________________________________ 1 ___ ___

..

CHAPTER 1

INTRODUCTION

SEKA is a 68000 Native code Assembler for the
AMIGA, and other 68000 Based micros. Standard
Motorola Mnemonics are used, producing either
absolute or relocatable code at a rate of 25,000
lines per minute for both large and small files.
Executable code is produced as standard, but
linkable code can be produced if the 'L' option
is specified on assembly. SEKA contains a built
in Linker, which runs 5-10 times faster than
assembly. SEKA a llows instant debugging using
the built-in symbolic debugger. Code can b e
entered using the built-in editor, o r can b e
loaded from another source - e.g. a text editor
or wordprocessor.

All functions can be used without accessing disk
- source, object, and even optional link buffers
are in RAM thus ensuring a very fast edit
-assemble -(link) -debug turnaround.

_____ 2
________________________________ __

----------------------- ...

Features : * Text Editor
* Full 68000 Assembler
* Symbolic debugger
* Line Disassembler
* Formatted Listing output
* Absolute, relocatable or linkable

code
* Built in Linker
* Conditional assembly
* Macro facility

This manual covers the operation of the
Editor/Assembler/Disassembler/Symbolic Debugger,
and the Assembler pseudo cps.

NOTE: The user is expected to be familiar with
Motorola 6 8 0 0 0 Assembly Mnemonics, or have a
suitable book available.

This manual refers to version 1.4 of SEKA.

Due to a policy of continual improvement
version supplied may be more recent.
improvements or changes will be included
file called READOC . ME, on the disk.

"_oe
Any

in a

SERA has been designed to work in 8 0 column
mode, and although it may 'be used in either 6 0 or
80 . It will look neater in 8 0 columns.

________________________________ 3 ___ ____

Running SED

SEKA must be run from a command line, since the
disk appears empty if you look at it from the
workbench. If you are in workbench, select the
icon marked CLI (command line interpreter) and
double click on it.

Now run SEKA, just
necessary to prefix
e.g. " dfO:seka " . dfO :

Workspace

type "seka " . I t may be
it with the disk name,

is the built in disk drive.

SEKA uses an area of memory as a workspace . It
will prompt for WORKSPACE KB> when it is run, and
will expect a size in K bytes. I deally this
should be all the memory, which is not required
for other tasks, usually about 150K if you are
running nothing else.

Type 150, followed by the Return key.

e.g. WORKSPACE KB> 1 5 0

Entering Co.-ands

When SEKA runs, the prompt SEKA> is displayed .

From this mode,
commands may be

editor,
entered.

debugger, and assemble

All command l ines must end in <RET> (the Return,
or Enter, key).

_____ 4 ______________________________ __

An exception to
(press the
simultaneously) ,
the pr inter.

this is
<Ctrl>
which

ending with
key and the

redirects the

<Ctrl P>,
P key

output to

Also <ESC> is used to exit frominsert mode,
mOdify mode, immediate assembly mode, and the
screen edito r . (see I, M, and A commands) .

Final ly, <Ctrl-C> will abort the current command,
and return to SEKA command level.

e.g . The P command 'prints' l ines of text to the
screen, you suffix it with the number of
lines to print, so . . .

SEKA>P10<RET> prints 10 lines to the screen

SEKA>P10<Ctr l-P> prints 10 lines to the printer

Intra Line Editor

When cyping a line of text (before pressing <RET»
it is oossible to delete the last character typed
by pressing <BS> (the BACKSPACE key) , as is
common with most systems.

In addition SEKA allows;
- cursor keys < - - and --> to be used to move left

and right.
- deletes the character under the cursor.

_____________________________________ 5 ____ _

< RET > or
returning
position.

<Ctrl-P> terminates Intra-line editing,
the whole line regardless of the cursor

In addition, t recalls the
which can then be edited,
<RET> (or <Ctrl-P» again.

previous line of text,
and entered by typing

e.g. type TEST LNE
hit <RET>
hit t
type < - - <--
hit < RET>

I - Exiting SEn

To exit, use the I
SEKA will prompt "Exit
Replying Y or Yes to
anything you forgot to

display TEST LNE

TEST LNE
I TEST LINE

(Exclamation mark) command.
to system, are you sure?".
this will exit, loosing
save.

_____ 6 ______________________________ ___

----------------------------------�--

CHAPTER 2

THE PROGRAM EDITOR

SEKA provides two editors for
program (source). The screen editor
use for most purposes, and that is
first. For functions such as locating
command described under LINE EDITOR.

SCREEN EDITOR

editing the
is easier t o

described
text, use a

The screen editor is very simple and it is
easier t o use than the line editor. Note that all
editing is done in the Source Buffer in memory -
there is no concept of editing a disk file.

Type < ESC> in response to SERA> prompt, t o enter
screen edit mode .

All text typed is inserted, cursor keys allow
movement up, down, left , or right. deletes
the character under the cursor, and <BS > deletes
the character to the left, i.e. the character
just typed .

<Ctr!-O> will open a blank line before the
current one.

Pressing <ESC> at any time from
screen editor will exit to command
SERA> prompt) .

.....ithin
level

the
(the

_________________________________ 7 __ __

CUT & PASTE

In the screen editor , it is possible to cut out
a section of text , and Paste it in zero or more
times.

Initially place the
the p iece to cut out ,
Move the cursor t o the
CUT it out.

cursor at the BEGINning of
and mark it using <Ctrl-B>.
end , and type <Ctrl-C> to

To PASTE ,
cut out will
position.

just
be

type < Ctrl-P>.
pasted in at the

The block. last
current cursor

Note that leaving screen edit mode ,
to SEKA> command level , will erase
buffer.

This is useful for:

returning
the paste

a) deleting text , just cut it out. No paste.
b) moving text , cut it out , reposition cursor &

paste it in.
c) copying text , cut it

immediately, reposition
in another copy.

THE LINE EDITOR

out ,
cursor

paste in
and paste

This section describes the whole line editor
commands. For other commands , see other sections.
Note that within a line , the Intra-Line editor
may be used - see Chapter 1.

_____ 8 ____________________________ ___

Some commands take numeric parameters, which if
omitted default to 1. This parameter is indicated
as n in the below text. The Locate command takes
a textual parameter, terminated by <RET>.

I - Insert text
E - Edit line Tn - Target to line n (default=top)
B - Bottom of buffer
Un - Up n lines
Dn - Down n lines
P n - Print (to screen) n lines
Zn - Zap (delete) n lines
Lt - Locate text t
L - Locate next occurrance
K S - Kill source
a - Old, opposite of K S
H - Howbig are buffers

Note that all
Buffer in memory -
a disk file.

I - In.ert text

editing is done in the
there is no concept of

Source
editing

The I nsert command opens a line at the current
line for more text to be inserted into the source
buffer. A line number will appear, and text can
then be entered. Typing <RET> will end this line,
and the next line will open. This is Insert Mode,
and can be exited by typing < E SC> at the start of
a line.

The opened line occurs immediately above the
current line, and has the same number . The old
current line, and all subsequent lines, are
renumbered to make room for the new line or lines.

________________________________ 9, __ __

-

I -_EDIT LIKE
Edit allows you to edit

Editing may be done with the
and exited by typing <RET> .

Tn - Target to line n

the current line .
intra-line editor,

The concept of the current line i s very
important i n this editor, and this command allows
the current line to be set.

Just typing T will take the default n-1, or the
top line, and thus T is an easy way to the top of
the buffer.

If you are unsure which line you want - use the
Locate command, or Up and Down commands to move
relative to your current position .

8 - Bottom of buffer
This command will take you to the bottom of the

source buffer .

Un - Up n lines
The Up and down commands are useful to move

around the buffer relative to your current
position. Up will take the current position up
(towards the top of the file, or lower numbered
lines) by n lines . The line reached is displayed .

Dn - Down n linea
Down i s like up, only you move down n lines.

Pn - Print (display) n lines
Print displays n lines o n the screen, starting

at the current line. The last line becomes the new
current line, and thus the current line moves n-1
lines down the buffer . The P command alone (n
defaults to 1) displays the current lin e .

____ 1 0 ____________________ __________ __

To print this on the printer, use the P command
wi�h suffix <Ctrl-P>, see Chapter 1.

Zn - Zap (delete) n line.
The Zap command will delete n lines, starting

ae ehe current line. The current line and
subseqent lines will be deleted, and the
remaining lines renumbered to fill the gap. If the
number of lines is small «20), then they will be
disp ayed as they are deleted. Otherwise "Sure? "
will be asked, and Y or Yes should be typed to
Zap the lines. Note: Use this command with
caution, since there is no provision for
recovering lost lines I

t - Locate text t
The locate command allows text to be lo·cated

(found). The command will only find one occurence
of the text, but it may be repeated by the
command L, with no text. The search starts at the
line following the current line, 50 use T first to
go to the top of the buffer if you want to search
the entire buffer. If the text cannot be located,
Not Found is displayed, otherwise the line in
which the text occurs is displayed, and becomes
the current line.

L - Locate next
The L command with no text following, will

locate the next occurrence of the text previously
specified.

__________________________________ 11 ___ ___

KS - Kill Source
This command erases the source buffer. The
prompt "Sure?" appears, and typing Y or Yes will
kill it, otherwise "** Not done" is displayed.
Since this command works jus. by moving the EOF
pointer, and setting an EOF mark , the file can be
recovered using OLD .

o - Old
This command recovers a source buffer if one

was deleted recently . The first character of the
buffer is forced to " ; " The size of source
buffer is displayed if succesful (see HowBig) .

H - HowBlg are Buffers

This command displays the size of the:

WorkSpace (WORK) ,
Linker input buffer (LINK) ,
Source text buffer (SRC),
Relocation stream code (RELC) ,
Relocation stream data (RELD) ,
Object output code (CODE), and
Object output data (DATA) .

Each is
as start
pointer in
decimal .

on a line
of file
Hex, and

of its own,
pointer and
the size of

and is displayed
the end of file

the file in

Note that the buffers (except SRC) are
displayed if they are non-zero size. This is
to simplify the display .

only
done

_____ 12 ________________________________ __

e.g. SEKA>H
Work 047804 057804
Src 047C82 047D78

65536
246

__________________________________ 1 3 __ __

CHAPTER 3

THE ASSEMBLER

The Assembler has one command: A - Assemble .

The prompt OPTIONS> is then displayed, and
simply typing <RET> to this prompt will assemble
normally without listing. See section below on
Listing & Options.

The assembler "moonlights M 4S III linker, and
will (by default) take any linker code placed in
the linker input file, and link that, 4S well as
assembling the source to produce an executable
file see Linker Section. Normally it is not
necessary to use a linker, and this section, and
the linker input buffer may be ignored.

ASSEMBLY SYwrAX

All 68000 instructions are available with
standard Motorola Mnemonics . Although III summary of
these is given in appendix S, the user is advised
to obtain III book on 68000 programming if he or
she is not already familiar with it. Instructions
may be entered in free format, i. e . there is no
need to use TABs to format the code neatly - the
assembler will automatically do this on listing.

A line of code can be considered to consist of 4
fields:

_____ 14, __________________________________ __

Label f ield
Operator f ield
Operand f ield

Comment field

e. g. LOOP:
e. g. MOVE. B
e. g. DO , (A5

e. g. ; Setup

Must end in a colon.
Instructions are all
standard Motorola
format.
Must begin with a
semicolon.

This may be entered in free format , with a
space only required between the operator and
operand f ields. For example , the above line can
be entered:

LOOP: MOVE. B DO, (A5); Setup

Any or all the fields may be omitted , although
an operand w ithout an operator is meaningless ,
and an error message w ill result.

LABELS/SYMBOLS
A label is just a special kind of symbol , and

the two w ill be described here together. A symbol
is a name which has an associated value. Unlike
variables in high level languages , the number is
constant. Symbols can be defined in two ways: (a)
by plaCing it w ith a colon afterwards , as a
label, it takes on the value of the current
location counter , and can be used to refer t o
that locationi or (b) by using EQU or = pseudo
ops, see below.

Symbols consist of any number of alphanumeric
letters or numbers , upper or lower case . No
distinction is drawn between upper and lower
case , e. g. Help is the same as HELP. The f irst
character of the symbo l must be a letter. Long
symbols may be truncated on l isting. Reserved
words may not be used for symbols.

__________________________________ 1 5 ____ _

-

COMMEIITS
Comments are ignored by the assembler . They are

preceded by a semicolon (or star), and terminated
by the end o f line.

A comment can be preceded by a star ("*") in
the first coluonn , or by a semicolon ("j") at any
point i n the listing. A star in any other
location does not introduce a comment (rather, it
indicates multiplicatio n , or the current location
counter) .

When a listing is requested , the assembler
formats comments which lie on a line of their own
differently to those after an instruction .

.uMERIC EXPRESSIONS

Numbers may be entered in one of four bases, or
as ASCII characters. In addition Labels and
symbols may be freely used, and arithmetic
operators Add, Subtract , Multiply , Divide , And, Or
and Xor (+_*/& ! H) may be used to combine these.
Prefix Minus and Not (--) are also available.

Comparasons may be performed with the operators
equal_to, less_than and greater_t6an (:<» , which
return a value of 0 i f false and 1 if true .
Square brackets [] may �e used to indicate
ordering o f arithmetic, otherwise the operations
are performed strictly in the order in which they
are entered .

______ 1 6 ____________________ ______ ______ __

The four bases allowed are: Decimal,
Hexadecimal, Octal, and Binary. Default are
decimal numbers, Hex require a $ prefix, Octal a n
@ prefix, and Binary require a , prefix .

ASCII constants need to be placed in a pair o f
single or double quotes, e . g . 'A', 'AB', 'AB C ' , or
'ABCD ' . Where more than one character i s placed
inside the quote marks, the first character fills
the more significant byte, etc, and the last
character is allocated the least significant byt e .
i . e . the characters are packed a t the bottom o f
the word or longword. KABCK = $00414 243 . Thus a
MOVE . B £'A',DO and MOVE . L £'A',DO will both place
an 'A' i n the low byte o f DO .

The location counter is represented by *, and
may be used freely to represent its current value.
NB: * represents the current location counter,
not the value at the start o f instruction ! Beware
o f DBRA DO,* %! However, * (PC) will give the
anticipated result, as will D C . W HERE-*, THERE -*
which i s the same a s DC .W HERE-* followed by DC . W
THERE -*

__________________________________ 1 7 ___ ___

When the prompt OPTIONS> appears, none or more
options can be specified.

Options Y, E, o�
Listing can be sent to the screen by entering

·V" for video. A formatted listing will be
produced . A .p. (or "E") option will send the
formatted listing to the Printer - a listing name
will be prompted for. For neatness, it is best to
assemble without listing until errors have been
removed. If no device is specified, no liatinq is
produced.

Option "HM will direct the listing to
between pages, which is useful both on screen,
with manually sheet fed printers . Continue
hitting any key.

hold
and

by

Option ·0" will optimize branches. Only
branches with no . S or . L are optimised, if you
deliberately use . L the assembler assumes you
have a reason I Note that this modifies the source,
it adds " . S " . Note that option "0" takes a long
time by SEKA standards, it is NOT recommended and
can cause strange effects sometimes.

All short branches
automatically upgraded

that are out of range are
by SEKA to . L branches, and

produced. This occurs
is specified.

a warning message is
whether or not option ·0"

Option "L" will produce linkable code, see the
Linker section later in this manual.

_____ 18, ________________________________ __

--------------- .-

A symbol table is produced as standard, when
listing is requested. Entries are o f the form
NAME . . • VALUE, with a "+" sign after the value
signifying a relocatable or external name . I f the
name is a Macro name, -MACRO- is displayed instead
o f a value.

Errors raised in the assembly (except warnings
generated by changing . S branch to . L) are treated
as fatal i f no listing has been requested,
otherwise all the errors are listed. When the
assembler stops on error, the current line is set
to the one which contains the error, to aid rapid
correction.

It is recommended to assemble without listing
until all assembly errors have been removed,
unless a listing with errors is deliberately
required. Most users find that the Stop-on-error­
with-quick-edit-and-r eassemble approach is easy
and simple to use.

More
OPTIONS

than one option can be specified
line:

e.g SEKA>A
OPTIONS>VH will list to

between pages.
screen,

on the

holding

____________________________________ 19 ____ _

PSBUDO OPBRATORS

Pseudo operators (pseudo ops
assembler directives . They do not
code, but instead affect the
assembler.

for short) are
usually generate
operation of the

Three pseudo ops do generate code : DC . B, DC . W
and DC.L will generate Byt e (s) , Word (s) or
Longword(s) containing the value of the
arguments . BLK will leave space for data tables,
etc. It takes one or two parameters, the first is
the space in bytes (or words, or longwords if . W
or . L suffixes are attatched), the second the
desired fill value.

Code generation begins at an origin . This can
be relative code, at which case the code begins at
relative 0 the CODE and DATA pseudo 0Pi or
absolute code, in which case the code has a
prespecified start address - specified by the ORG
directive. Assembling straight into memory will
occur automatically with relative code, but after
an ORG a LOAD directive must be included in the
source code. This specifies the address in memory
to load the code - and is usually the same as the
ORG address .

The assembler will stop assembling the source
file when it meets an END directive, or at the end
of file.

____ 20 ________________ ________ ______ __

TABLE OF PSEUDO OPERATORS

DC

BLK

ORG

LOAD

CODE

DATA

EVEN

ODD

Defines a byte, word, or longword in
the object code. More than one number
may be placed after the directive,
separated by commas . In addition,
messages may be placed after the DC. S
directive, in s ingle or double quotes.
Default s ize=. B

Defines a block of memory. The f irst
parameter specifies the size of the
block, and the second the value to
fill it with. If the second is omitted,
it is undefined. Default size=.B

Takes a single parameter -
to start assembling at.
Absolute code mode.

the address
Switches on

Takes a single parameter - the address
to start loading into memory from. Only
works in Absolute code mod e .

Sw itches
segment.

on R e lative mode, Code

Relative
segment.
call this

mode,
(note

BSS) .

Data
that

(uninitiallized)
some assemblers

Forces the address even. If odd, defines
a byt e .

Forces
defines

the address
a byte.

odd. If even,

__________________________________ 21 ___ ___

END

EQU

LIST

NLIST

PAGE

Ends the assembly process .

Both EQU and = can b e used to seta
symbo l to a ·value . The symbol
name is entered, tollowed by a
co lon, as normal, and then by
EQU . Instead of taking on the value of
the Location Counter, the symbo l takes
on the value of the expression after
EQU.

Identical to EQU, only no colon is
needed after the symbol nam e .

Turns listing on. Note listings are
only produced if a E, P, or V option is
given to OPTIONS> . It may also b e
used with a parameter to selectively
enabl e Listing of Macro Calls (LIST C)
Macro definitions (LIST D) Macro
Expansions (LIST E) and Code extensions
(LIST X) .

Turns listing off. May also
with a parameter to switch off
of the items specified in LIST .

be used
listing

Forces a new listing page. The
directive lists on the first line
the new page.

PAGE
of

____ 22. ________________________________ __

IF

IFB

ELSE

ENDIF

".ACRO

ENDM

Conditional assembly - takes a numeric
expression, which i f it evaluatesto 0
(False) does not assemble the
following lines, and i f non zero (True)
assembles the following lines . See
ELSE and ENDIF . May be nested to B
levels .

I f Blank
argument,
is blank,

usually takes a macro
and is true i f the argument

(i. e . null). e. g . IFB 12

the Toggles
condition,
to assemble

i . e .
and

Terminates the
block.

conditional assembly
i f assembling, ceases

vice versa.

conditional assembly

A symbol given before the macro op
becomes the name o f the macro, and it
may be called by typing that name,
followed by a list o f arguments,
separated by commas . The code o f the
macro (its definition) follow on
subsequent lines, and assembly is
turned o f f .

Ends a macro definition,
assembly.

and restores

__________________________________ 23 ____ _

-

?n----------'R�e�q=u�e�s�t�s�t�h-=a�t�t�h�e=-�m�a�c�r=o=-�a�r�g=u�m�e�n�tC-�n=--,i�sc--­
used at this point. Valid only in macro

?O

GLOBL

PWID

PLEN

P INIT

ILLEGAL

definitions. 0= 1 thru 9

Generates three digits, unique for
every macro call . May be used to create
local labels (e.g. X?O) . Valid only in
macro definitions .

Takes a list of symbols which are to be
treated as glabals see linker
section. Must be the first operator
in the file. May only be used with the
-L" option .

Sets the
listings.

Sets the
default is

printer page width for
default 80.

printer page
66 lines.

length. The

Sets a code sequence to initialize the
printer, useful to set 1 3 2 columns, USA
font (with f), etc. e. g . for Epson to
set 1 3 2 columns . . . PINIT 15

Note the above 3 are ignored if printer
listing not requested.

Generates an illegal instruction, useful
for causing exit to the SEKA debugger
(or other debug system) . identical to
DC. W $ 4AFC.

____ 2 4
________________________________ __

LINE A)

AL IGN

Generate calls to emulator traps, e.g.
LINE A $ 1 2 3 is L INE F) identical to
DC .W $Al 2 3.

Will align the object to an n byte
boundarY i AL IGN 2 is identical to EVEN,
ALIGN 4 longword aligns. Only powers
of 2 give sensible results. (i. e . 2, 4,
8, 1 6, etc) .

__________________________________ 2 5 ___ ___

CHAPTER ,

SYMBOLIC DEBUGGER

The symbolic debugger is a built in Machine
code monitor with extensive use of the
assembler's facilities, such as symbol table
access, arithmetic operations, and input in any
base. In addition, the debugger offers a
disassembler, a line assembler, trace, multiple
breakpoints dS well as examine/modify registers
& memory, fill, copy, search etc .

x - Xamine all registers
Xr - Xamine/Modify register r
Gn - Goto address n
In - Jump to subroutine at n
Qsn- Query (examine) memory at n
Nn - mNemonics of memory at n
An - Assemble immediate at n
Msn- Modify/Examine memory at n
Sn - Single step, n steps
Fa - Fill memory (bytes)
C - Copy memory
? - Display value of expression Y - VDU

____ 26 ________________________________ __

Various default values apply if the numeric
parameter is omitted from the commands above. In
the case of Single Step, the default is 1 .
Geto, and Jump to Subr, default to the current
PC. The memory addresses in Q, N, M, and 0, all
default to the last used address of one of the
four (the current object location) . I n
addition, a size can be specified for F, Q, and
M. This will default to Byte, but . W or . L can
be specified for Word or Longwerd operations.

x- Xamine registers
The 8 data, 8 address, PC, SR, USP and SSP
registers are displayed. The flags indicated by
bits in the status register are explicitly
displayed and the current instruction (i.e. the
one which would be executed nex t) is
disassembled and displayed.

The format of the display is:
DO=OOOOOOOO 00000000 00000000 00000000
D4=00000000 00000000 0000000 00000000
AO=OOOOOOOO 00000000 00000000 00000000
A4=00000000 00000000 0000000 00000000
SSp=OOOOOOOO USp=OOOOOOOO
SR=A3 1 F tsxnzvc PC=OOOOOO BR $ 0 0 0 0 0 8

Across the top
DO, Dl, 02, 03,

line are the 8 data registers,
04, D5, D6, and D7.

__
__________________________________ 27 ____ _

-

The next line displays the Address registers,
AD, AI, A2 A3, A4, AS, A6 and the stack pointer

A7 which is the User or Supervisor SP
depending on the 'S' bit in the Status Register.
The third line displays the two stack pointers,
the status register word, the flags set in the
status reg ister, the program counter, and the
instruction at which it po ints .

Xr - Xamine/Modify register
The register ind icated by r IS displayed, and
the contents can be altered. To a lter the
number, just type in the new value, fo llowed by
(RET>, and the new value will be d isplayed. rf
no change is required, just type <RET>. A l l
registers are 3 2 bits except for SR, which is
16. SP and A7 refer to USP or SSP, depending on
the S bit of the status register.
Valid registers are:

DO
AO
SP
USP
SSP
SR
PC

07
A7

Data registers
Address registers
Stack pointer (=A7)
UserStack pointer
Supervisor Stack pointer
Status Register (16 bit)
Program Counter

_____ 2 8
____________ ______________________ __

In addition
examined and

the following
modified :

pointers

SOF the start of source pointeri
SOL start of l ink pointer
EOF the end of source pointeri
EOL end of link pointer

On - Gato addr... D

can be

The address n is placed in the program counter,
If n is not -given, the PC remains unchanged .
Breakpoints are prompted for, up to 8 in all .
To set a breakpoint, just type in the address
after the prompt . Typing <RET> after a prompt
set. no breakpoint, and begins to execute the
code from the address in PC .

3D - Jump to Subroutine
See G above, only a return address is placed on
the stack (If SR=User mode, USP. If
SR-Supervisor mode, SSP) . The stacks are reset,
thus any information previously on the stack is
lost.Note that on return, the PC points to an
ILLEGAL instruction, somewhere in the heart of
SERA. This is correct, it's used as a
breakpoint. Since the RTS instruction looses the
value of PC before return, there is no way to
tell if you exited v i a a normal exit or not.

____________________________________ 29 ____ _

-

QaD - Qllery __ ry
128 bytes, 64 words, or 32 lonqwords of memory
are displayed in Hex starting at 0, or
defaulting to the current object location. The
current object location is advanced to the
address one aiter the last byte . The Ascii
characters represented by this are displayed on
the right of the hex display.

Nn - .. emonlc.
16 lines of code are disassembled to the screen,
starting at n, or defaulting to the current
object location. The current object location is
advanced to one past the last address
displayed. See section on DISASSEMBLER, below .

An - A •• emble immediate
The address n is displayed, and the user is in
immediate assembly mode. An instruction may be
entered, and it will be assembled directly into
memory, and the next address will be displayed.
The mode may be exited by typing <ESC>. If an
error is made in the mnemonic, an error message
will be di splayed, and the mode exited. Note:
It is not possible to omit n for this command,
but ."A*" may be typed, to indicate to assemble
from the current location.

_____ 30 __________________________________ __

Man - Modify/Examine .e.ory
The address n, defaulting to the current object
location is displayed, and the contents of the
byte, word or longword is also display ed . To
modify this location, simply type in the desired
value, and the displayed memory will update
itself. To advance to the next location, type
just <RET>. To exit to SERA command mode, type
<ESC>.

Sn - Single step
The S command will single step the program,
using the Trace facility on the 6 8 0 0 0. If n is
specified, n steps w ill be performed before
reporting back to the debugger. The PC must be
set up beforehand, either as a result of a
previous S or G command, or as a result of an
explicit XPC.

STEP will not trace through TRAP calls or LINE-A
LINE-F calls since these will usually be calls
to the operating system. This is done
automatically by STEP by placing a breakpoint
after the call .

Fs - Fill
Three parameters wi l l be prompted for, BEGIN,
END, and DATA. The data byte, word, or longword
will be filled in between BEGIN up to, but not
includ ing END .

__________________________________ 31 ____ _

C - Copy
Three parameters will be prompted for. BEGIN,
END, and DESTINATION. The memory w ill be copied
from the area BEGIN up to but not including
END, to the area starting at DEST. The copy is
an , Int ellegent , copy, and will not overwrite
the data it is copying even if the destination
area overlaps the source area.

? - Display value
The expression or value after the ? w ill be
evaluated, and the result di splayed in decimal
and Hexadecimal. This is u seful for everything
from exam�nlng the value of a symbol, to
performing calculations. It can also be used to
convert from one base to another.

r - VDU
This enters a simple VDU mode, where the screen
and keyboard communicate with a device on the
serial line, using default baud rate '
characteristics set on power up or other
initialization program. Exit by typing
<Ctrl-C>. Note: <Ctrl-C> , <Ctrl-S>, and
<Ctrl-Q> are interpreted in their normal
context, and not sent down the serial l ine.

____ 32 __ __ __ __ ______________ ________ __

DISASSEMBLER
A standard feature of SEKA i s a simp l e line
disassembler, fully integrated with the main
assembler package. The Mnemonics used are
standard Motorola - just like the as semb l er . The
disassembler is invoked by the command N (for
mNemonic s) fol lowed by an address . 1 6 lines of
code are displayed .

The disassembler can disassembl e a l l 68000
instructions, but i s not defined for invalid
instructions . It should always b e r emembered
that some areas of memory are data areas, and do
not contain valid code . Disassembling these can
give incorrect instructions you have been
warned I

Although its primary function i s as a debugging
aid, it can be used to disassemb le blocks of
cod e . This can b e a slow process, but the line
disassembler is preferab le to non e . It should be
remembered that some instructions can display
differently to the instruction typed into the
assembler . All numbers and addresses are
disassembled in hex, and a lthough . 8 . W and . L
suffixes are sometimes added in places where
they could be omitted, in unambiguous places
they are often not displayed. Instructions
where the assembler has used a Quick form, etc,
are displayed as such . In addition,
instructions such as EXG can display the
registers in either order the function i s
identica l .

__________________________________ 33 __ ___

CRAP�ER 5
LOADI.a a.D SAVI.a
The filing commands are :

R read source file

RL read linker file
R I read image
V view directory

KF kill file

v - View Directory

W write source file
we write object file
WL write l inker file
WI write image

) copy output to file

will display the directory in the form:
nnnnn Blocks Used mmmmrn B l ocks free
•••• fffff •••• f f f f f •••• f f f f f
•••• fffff •••• f f f f f •••• f f f f f
•••• fffff •••• f f f f f •••• f f f f f

where nnnnn and mmmmm are space used and free on
the entire disk, and SBBS is the size (in byt ••)
of file fff ff. The command may be suff ixed by a
directory name, otherwise it will display the
current directory.

When a directory is specified with View, it
attaches to the directory (i. e. makes it the
current one), and then displays it.

KF - Kill file
KF w ill prompt for a file name and delete that
disk file if it exists.

____ 34 ______________________________ __

R/W .ource
Prompt for fi lename (default extension .S). Read
will read the file into the current l ocation in
the source buffer - for overwrite simply k i l l
the source first (KS) . Write wi l l write the
whole source buffer to the file.

<Ctrl-w>
From screen editor, it is possible to output the
current paste buf fer to disk by typing <Ctr!-W > ,
A fi lename will be prompted for. Default
extension is .S, since it is a source file. To
read it back in, use the R command.

110 object
Prompt for filename (no
will save the object on
relocation information:
of saving an executable

RL/lIL link

default extension) . WO
disk, with a header and

this is the usual way
file.

Prompt for filename (Default extension . LNK) .
See linker section. WL w i l l write a l inkable
file FROM OBJ BUFFER. This can be used after an
As semble Option)L to save the linkable code
produced. RL wi l l read a disk file and append it
to the l ink buffer. Use KL to kill the l ink
area if necessary. Many files may be read into
the link buffer and l inked together. See also
CL.

__________________________________ 35 __ ___

-

Rl/wI ilD.Age
For flexibility, these commands will allow a
data or other file to be read in or written out .
Both prompt for f ilename and start/stop
addresses. On read: put STOP as -1 for entire
file .

> copy output to disk

Prompts for F ILENAME . Will subsequently copy
anything which appears on the display/printer to
the specified file on disk . Finish the
operation with either another ")" command, or by
exiting SEKA .

Note on filenames If no name is specified when
F ILENAME is prompted for, the operation is
aborted and " •• Not Done" is displayed.

_____ 36
__________________ ______________ __

CHAPTER 6

LINKER
Convel assemblers produce l inkable code which
then needs to be l inked by a l i nker to produce
executable code, even if no additional modules
need to be l i nked i n .

SEKA is d ifferent . The assembler can produce
either executable code, or linker code, and for
small programs there is no need to use a
linker . Since the assembler will accept either
standard 6 8 0 0 0 source code or linker code, it
can act as a l inker, linking modules of
l inkable code (which have been loaded into the
LINK buffer), and producing executable code.

A novel "extra " SEKA provides is the ability to
link modules of linkable code AND assemble a
source AT THE SAME TIME, so enabling one module
to be worked upon - and small changes made -
and the results of tests to be seen very
rapidl y .

The 'L' option on the assembler command co ntrols
the OUTPUT: default is executable, with L option
gives L inkable output . By default both link input
and source input files are taken by the
Assembler/linker, but when L is specified, the
Link input f ile is not input (since link input
:) link output is not allowed).

__________________________________ 37 ___ __

-

Assembling with linkable output
Use the A command, with L option:

link buffer

!SOURCE BUFFER!

assemble

ICODE BUFFER I (link code)

Note that the Link buffer remains unused and
unaltered.

Linking
Kill the SOURCE. Use the A command without L
option:

!LINK BUFF!

source
buffer

link

!CODE/DATA/CREL/DREL!

Note that the source buffer must be zero size,
unless it is desired to assemble as well as
linking.

______ 38 ________________________________ __

A ••• abl. • Link
Use the A command without L option :

ILINK BUFFI and ISOURCE BUFFI

assemble and l ink

CODE/DATA/CREL/DREL

Ll !IllER COlll1MD5

CL - Copy Obj to Link input buffer
Use this after an as semble-option-L to place the
linkable code in the link input buffer, ready
for a l ink. Prompts "Sure?" because it DELETES
THE SOURCE buffer! I Beware I

eL, like RL, appends to the Link input buffer,
to overwriting, see KL).

KL -' Kill Linker Buffer
Kills linker buffer. P rompts " Sure?" .

(a s

____________________________________ 39 ____ _

RL and WL
See Filing Section. WL can be used (instead of
CLI or possibly in addition to) 1 to save the'
linkable file assembled into the OBJ buffer. RL
can be used to read in linkable files - these
are read in to the LINK INPUT BUFFER. Note: RL
Prompts "Sure? " because it DELETES THE SOURCE I

RL,
(as

like CLI
opposed to

appends to the Link input
overwriting, see KL).

buffer,

Relocation Modes - a clarification

All arithmetic can contain externals or
relocatablesr providing the result is absolute,
relocatable or external I and not a composite of
these (like REL+REL or EXTERN-REL).

e.g. HERE: DC. L THERE-HERE
THERE:

is validl and the result is absolute (a pure
number) .

Similarly BRA HERE does an implied HERE-* (* is
the current location counterl initially Code
Relocatable) and is OK if HERE is a label to
the same REL section of the program.

BUT: BRA EXTERN will attempt to calculate

Use JMP EXTERN

EXTERN-*. (EXT-REL) I and
will fail with an error.

In practise don't worry
relocation mode error.

until you get a

_____ 40
______________ __________________ __

CIlAPTIIR 7
EXAMPLE PROGRAM

Thia section leads the novice user through a
simple program, which will help to understand
the simple and easy to use features of SEKA.

Output characters to screen
Type the following underlined sections into
SEKA. The non-underlined sections represent
output given 4S a result of the commands typed
(note that addresses may differ on different
versions of the machine or operating system):

Note that the file is shown being entered with
the I command on the line editor. Most users
find it easiest. to type <ESC> and use the
Screen editor, but it' is easier to show the I
command in the examples here.

__________________________________ 41 ___ ___

-

WORKSPACE KB> 150
SEKA>h
Work 02EB48 054348 15 3 6 0 0
Src 02EB4E 02EB4E 0
SEKA>i
1 jProgram to print some characters on screen
2
3 start:move.l execbase,a6iOpen DOS library
4 lea dosname,al
5 jar OpenLib(a6)
6 move.} dO,a6jBase of AmigaDOS
7 jar Output (a6)iget output stream
8 move.l dO,dl
9 move.l Ebuf,d2
10 moveq Ebufsiz,d3
1 1 jar Write (a 6)iWrite text to screen
12 c1r dl
1 3 end:jsr Exit (a6)
14
1 5 align 4iA1ign to longword
1 6
17 dosname:dc 'dos.library',O
1 8
19 align 4
20
21 buf:dc 'Hello World',LF,O
22 bufsiz : *-but
2 3
24 end
2 5 <ESC>
SEKA>h
Work 02EB48 054348 1 5 3 6 0 0
Src 02EB4E 02ECDE 4 0 0
SEKA>

____ 42
__ __ __ __ ____ � __ __ __ __ __ __ __ __ __

Now the main part o f the program has been typed
in, but the equates for the libraries reside in
a file on disk, called AmigaDOS.i. Read this
into the file, at, say line 2 .

SEKA)t2
2

SEKA>r
FILENAME>amigados.i
SEKA>

now lets assemble the source . . . no options for
just assembling.

SEKA>a
OPTIONS>
** Undefined Symbol

46 buf :dc 'Hello World' ,LF,O
SEKA)

It stopped on an
Come to think of
we? Lets do so.

error. Something is undefined .
it, we never did define LF did

The cursor is currently pos itioned on the line
with the error. Lets put the definition on the
line before . (the I command inserts before) . ..

____________________________________ 43, ____ _

-

SEKA>i
4 6 LF=lO
4 7 <ESC >

SEKA>a
OPTIONS>
No Errors
SEKA>h
Work 02EB48 054348
Src 02EB4E 02EE56
RelC 02F19C 02F1AC
ReID 02F1BO 02F1B8
Code 02F1C8 0 2 F 2 1 0
SEKA>

1 5 3 6 0 0
7 7 6

1 6
8

7 2

don't be upset by the sudden increase in
complexity of the Howbig command. What it ' s
trying to tell you is that there is now some
object code in the CODE buffer (plus information
about how to relocate i t , should you save it to
disk, and reload it in another location - this
is stored in RELC and RELD) .

Well , since it's there, lets look at it . . . we
can do this by using a label - remember STAR T :
? First, use the N command to get mNemonics .

SEKA>n start
02F1C8 MOVE . L $000004.L,A6
02F1CE LEA $ 0 2F1F4.L , A 1
02F1D4 JSR $FE 6 8 (A 6)
alternatively, we can look at the machine code
itself, using Q (Query Memory). This has Byte ,
Word, or Longword options . Lets use the Word
option.

' f ---- '---------------------------

Well,
"Hello

SEKA>q.w .t.rt
O2f1t8 Zt79 0000 0004 43f9 OOOZ f1F4 4A4E FE68 ,y Cy . . qtH. �h
O2f1D8 ZC4Q 4EAE HC4 Z200 Z43C OOOZ F200 7600 ,iH . . O·' . S< • . r . v .

O2f1E8 4EAE HOO 4241 4EAE FF70 FFFF 646F 732E H • • PBAH . • p • • dos.
O2F1F8 6C69 6272 6HZ 7900 4865 6C6C 6FZO 576F li br.ry.Hello Wo
O2F208 726C 640A 0000 0000 IXXlO 0000 0000 0000 rld

02 F 218 IXXlO 0000 0000 0000 0000 0000 0000 0000
O2F228 0000 0000 0000 0000 0000 0000 0000 0000
021238 0000 IXXlO 0000 0000 0000 0000 0000 0000

at least I
World" in

can make out "dos. library" and
there. Probably a good sign.

Another way to see
to get an assembly

what the code looks like is
listing, e. g .

SEKA>A

OPTION >V (or option P for printer)

anyway, back to the matter in
untested program. Lets save
and run it ! Place a blank,
the main disk drive .

hand . . . we
it before

formatted

have an
we try
disk in

__________________________________ 45, ____ _

-

SEKA>vdfO:
o blocks used 1 7 5 8 blocks free

* * No files
SEKA>w
FILENAME >hi
SEKA>v

2 blocks
1 7 7 hLS

SEKA)

used 1 7 5 6 blocks free
I

Now it's securely stored, immune
(well, if you take the disk out o f
i t would be l) 1 we can try to run it.

to crashes
the drive,

Remember it starts
(were it normally
system) •

at START, and
EXIT' B back to

ends at END
the operating

SEKA>g start
BREAKPT >end
BREAKPT >

00-00000000 0ClC0000J CXXl21280 cxxx:o:oo D4-OOOO1'" i)X)(»'D) OOXO'JO [.... 00.
A()o(tt(XOXj CIOJZ382o OOCO'DXI CXXXXXXlO .f.4aIOOOOOOO "0Xl00C/ 00092D(0002412£
SSP-00G2SOCE US'�412E S� 1 'C�f29E JSR SI11O(A6)

SEKA>

What happened to the message? well, it was Bent
to the default output device, which is still
the system window. The SEKA window does not
alter this. So flip back to the system window . . .

_____ 46 ________________________________ __

Good. It seems to work .

Lets save the object program, so it can be run
from the system.

SEKA>wO
FILENAME>hi
SEKA> !
Exit to system, sure? y

_______________ 4 7 __

-

APPBlIDn A
.. 1g_Oo. Introduction
The Amiga operating system is
you want to use it to its full
outermost DOS level i s quite
explained briefly here .

quite complex if
extent, but the

simple, and

All calls to the DOS are by JSR calls to an
address made up of a base address (the address
of the library) and an o f fset . All offsets are
negative. Since the base address varie s , we have
to call another routine to find where it is. It
will never vary during the running of your
program, but might from one run to the next.

Only two libraries need to be used : "EXEC" the
most primative library, which contains calls to
open all the others, and "do s . library " , the DOS
library.

�b. lUBe library

The base o f the EXEC library is to be found in
location 4 (which we will call ExecBase for
neatness). This is the only pre-ordained value
in the entire system. Once that value has been
picked up, and by convention placed in address
register 6, A6 , (this i s essential , since some
o f the libraries assume that it is there and
call other routines l) , then the call OpenL ib (A6)
can be made to. open other libraries.

____ 48
______________ ________ ________ __

OpenLib (offset - 4 0 8) requires a
string in AI, and returns the new
in DO.

l ibrary name
l ibrary base

i L ibrary name

e. g.
move.L
lea
jsr
move .L

ExecBase,A6
dosname , Al
OpenLib (A6)
DO,dosbase

;call Exec's OpenLib
ito get the base of

routine
ArnigaDOS

library

not e :
found
disk.

the labels ExecBase and OpenLib are to be
in the AmigaDOS . i equates file on the

The AmigaDOS library
This library is like the DOS on a normal small
computer system. It allows input and output to
files or other devices , but does not have
facilities to access graphics, or sound. These
must be accessed via the rest of the operating
system - the other l ibraries . See your Amiga
dealer for more information.

All calls to AmigaDo6 take the same form as the
EXEC call, OpenLib . There is a table of the
offsets on the disk in the file I I AmigaDOS . i ".
These offsets must be applied to the AmigaDOS
base, not the EXEC base (see example below).

The table below sets out very briefly -
function of the rout ines, and lists
parameters they requir e, and the values
return .

the
the

they

49 __

-

Parameters are passed to the routines in Data
registers, the first parameter in 01, the second
in 02 , etc. All returned values are returned in
DO.

The table is set out below as:

Routine (01 , 02 , 03, . . .) : result_in_dO

mnemonic names are given to the parameters and
the result for descriptive value, notes on
these names are to be found below .

AmigaOOS functions

Open (name,mode Handle

Clo s e (handle)

Read (handle, buffer, maxsize
size

Write(handle,buffer, size)
: size

Input () : handle

Output () handle

Opens a file.

Closes an open
file.

Reads a block

Writes a block

R eturns the
default input

R eturns the
default output

_____ 50
__________________________________ __

h
L.
�

I�
i�
�

b
b
L
i�
i�
-

L
--

L ---

L ---

L ---

L: ---

L

i:
L
i�
L
�
L
-

L ---
L:

L.::
�

Seek (handle , position , mode
: oldpos

Delet e (name) : success

Renam e (oldname , newname)
: success

Lock (name, mode) : l ock

UnLock (lock)

DupLock (lock) l OC K

Exam in e (lock, infobuf f
: success

ExNext (lock,infobu f f
: success

CurrDir (lock) oldlock

Exit (return code)

Positions file
pointer

Deletes file or
directory

Renames a file

Obtains a lock on
a file

Releases the lock

Returns a
duplicate lock

Finds first
file in lock

Examines the next
file

Sets the current
directory

Exits to the
system

____________________________________ 5 1 ____ _

..

WaitForCh (hand l e , timeout)
: success Waits for a

character

note: there are other AmigaDOS calls, but these
are the most useful ones . Note all I/O must go
through READ and WRITE, even interactive
channels to the keyboard and screen .

• ot •• on &,194005 calls

handle

lock

name

A f i l e hand . e is returned
Open , and used by other
routines . A return
indicated Open fai led.

from
file
of 0

A lock 1 5 a bit like a handle.
Since It 1 6 cheaper to obtain
a lock on a f i l e , than it is
to open one, use LOCK i f you
just want to check it exists.

A pOinter to a null terminated
file name.

_____ 52
________________________________ __

r---, :-

mode

position

infobuff

SUCCt:!5S

buf�er

for open use 1 0 0 5 for
oldfiles ,
1 0 0 6 for newfiles.
for lock use -2 for
shareable locks .
for seek use - 1 for
Position relative to file
start
0 for Position relative to
current
1 for Position relative to
file end

A (possible negative)
character position in file. It
may be relative to the file
start, end, or current
position, see above entry for
mode .

The Examine/ExNext
return lots of
information. The block
longword aligned.

commands
useful

must be

Zero for fail. nonzero for
success.

Read and Write require a
pointer to a buffer containing
the data, even if it is just a
single character.

__________________________________ 5 3
____ _

size

timeout

The size of the buffer . Read
returns the actual size read,
and write returns the actual
size written (which only
differs if the disk is full,
or other error) .

A time in microseconds .

______ 54 ________________________________ __

L
r---

---=-
L
�
L
�
L.

L.:
�

b
�
L:

L:
�
L:

L:
--

L:
--

L:
i::
i::
� L:
--

L.:

i:
�
b; L:
--

L:
-..."

�
�

APPUDIX B
Instruction Set Summary

- -

ABC MOVEM . WL
ADD ADDA ADDI . BWL MOVEP .WL
ADDQ . BWL MULS
ADDX . BWL MULU
AND ANDI . BWL NBCD
ASL . SWL NEG . BWL
ASR . BWL NEGX . BWL
Bee NOP
BRA BR NOT . BWL
BSR OR ORI . BWL
BCHG PEA
BCLR RESET
BSET ROR . BWL
BTST ROL . BWL
CHK RORX . BWL
CMP CMPA CMPI . BWL ROLX . BWL
CMPM . BWL RTE
OSce RTR
DBRA DBR RTS
DIV SBCD
DlVU Sec
EOR EORI . BWL STOP
EXG SUB SUBA SUBI . BWL
EXT .WL SUBQ . BWL
JMP SUBX . BWL
JSR SWAP
LEA TAS
LINK TRAP
LSL . BWL TRAPV
LSR . BWL TST . BWL
MOVE . BWL UNLK

- -

Mnemonics on same line are synonyms.

55

cc

T VC
F VS
H I PL
LS HI
CC HS GE
CS LO L T
HE GT
EO LE

Addressing modes

On
An
(An)
(An)+
- (An)
d (An)
d (An , x n)

d. W
d
d (P C)
d (PC, xn)
£d
SR
CCR
USP

Please refer to a suitable reference book for
further details , Motorola 6 8 0 0 0 Users Manual
(Motorola) or L eventhal &: Kane " 6 8 0 0 0
Microprocessor" (Osborne/McGraw-Hill)

____ 5 6
__________ __ __________________ __

APPEIIDIl[I

SUmmary of all COmmAnds

- Exit to system Chapter 1
> - Set output file Filing
?o - Display value . Debugger
A - As.emble f i l e . Assembler
An - Assemble immediate. Debugger
B - Bottom of file . Editor
C - Copy memory. Debugger
CL - Copy linkable code. Linker
On - Down n l ines . Editor
B - Edit current line. Editor
Fs - Fill memory bytes. Debugger
Gn - Goto address n . Debugger
H - Howbig is file. Editor
I - Insert at current line. Editor
In - Jump to subroutine. Debugger
KS - Kill source buffer. Editor
XL - Kill linker buffer. Linker
KF - Kill Pile. Filing
Lt - Locate text. Editor
MSD- Modify/Examine memory. Debugger
Nn - mNemonics. Debugger
o - Old source. Editor
Po - Print n lines. Editor
Qsn- Query (display) memory. Debugger
R - Read file . Filing
So - Single step, n times . Debugger
Tn - Target to line n', Editor
Un - Up n lines. Editor
Vd - View directory . Filing
W - Write file to disk. Filing

_______________ 5 7 __

x - Xamine registers Debugger
X r - Xamine/Modify registers. Debugger
Y - VDU. Debugger
Zn - Zap n lines.Editor

6 = size (. B . w . L) . D .efault:c.B

n = number (e.g. S 1 0 0 , LABEL+2).
Defau lt=l or previous

d = directory (e.g. DF1 : C)DefaultzDefault
directory

t - text to be located . Default-previous
t

r - register name (e . g . DO)

Note: All ranges given
exclusive of the STOP

by START
address,

e.g. STAR T > 5 STOP > 8 means 5 , 6 and 7

Screen editor
Begin block Editor

Cut B lock Editor
Paste b lock Editor

STOP

<Ctrl-B>
<Ctrl-C>
< Ctrl-P>
<Ctrl-W > Write b lock to disk Filing
Cursor Keys Move
 and <BS> Delete right and left.

are

__ 58 ________________ _

