_% m Assembler

Commodore

AMIGA

= IVNINYIN =

LR AR AR 222

K-SEKA
EDITOR/ASSEMBLER

for
the

Commodore

AMIGA

Microcomputer

© COPYRIGHT 1986 ANDELOS SYSTEMS

(0 L L

{ix

IMPORTANT
=< 'A\R% 1‘3 15

SERIAL NUMBER

The serial number in your manual is the same as the serial number
on your registration card.

In order to obtain technical support it is essential to complete and
return the registration card enclosed in this package.

This serial number must be quoted when in correspondence with the
technical support service.

Should you need to return your program disc in the unlikely event of a
disc failure or loading error please return the disc ONLY.

For major upgrades i.e. from version 1 to 2 BOTH the manual and the
disc must be returned.

For minor upgrades i.e. from version 1.5 to 1.6 the disc ONLY should
be returned.

Kuma Computers Ltd.
12 Horseshoe Park
Pangbourne
Berkshire RG8 7JW

Tel. No. (07357) 4335
Telex 846741 KUMA G
Fax. No. (07357) 4339

ettt et

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

APPENDIX A

APPENDIX B

APPENDIX Z

1

K-SEKA
AMIGA

CONTENTS

INTRODUCTION

EDITORS

ASSEMBLER

SYMBOLIC DEBUGGER

LOADING AND SAVING

LINKER

TUTORIAL

AMIGADOS

INSTRUCTION SET

COMMAND SUMMARY

14
26
34
37

41

48
55

57

K-SEKA
c Copyright 1986 ANDELOS SYSTEMS

ISBN 07457 0182-5

No part of this manual or program may be
reproduced by any means without prior written
permission of the auther and the publisher.

This program is supplied in the belief that it
operates as specified, but Kuma Computers Ltd.
(the company) shall not be 1liable in any
circumstances whatsoever for any direct or
indirect loss or damage to property incurred or
suffered by the customer or any other person as a
result of any fault or defect 1in goods or
services supplied by the company and in no
circumstances shall the company be liable for
consequential damage or loss of profits (whether
or not the possibility thereof was separately
advised to it or reasonably foreseeable) arising
from the use or performance of such goods or
services. Compatibility with any other Assembly
Language systems is not implied or claimed.

Published by:-
Kuma Computers Ltd.,
12 Horseshoe Park,
Pangbourne,
Berks. RG8 7JW
U.K.
Telex: 846741 KUMA G Tel: 07357 4335

CHAPTER 1

INTRODUCTION

SEKA is a 68000 Native code Assembler for the i
AMIGA, and other 68000 Based micros. Standard
Motorola Mnemonics are used, producing either =
absolute or relocatable code at a rate of 25,000
lines per minute for both large and small files. i
Executable code 1is produced as standard, but
linkable code can be produced if the 'L’ option =
is specified on assembly. SEKA contains a built
in Linker, which runs 5-10 times faster than =
assembly. SEKA allows instant debugging using
the built-in symbolic debugger. Code can be &
entered using the built-in editor, or <can be
loaded from another source - e.g. a text editor =
or wordprocessor.

All functions can be used without accessing disk
- source, object, and even optional link buffers =
are in RAM - thus ensuring a very fast edit
-assemble ~(link) -debug turnaround. =

R R

Features: * Text Editor

* Full 68000 Assembler

* Symbolic debugger

* Line Disassembler

* Formatted Listing output

* Absolute, relocatable or linkable
code

* Built in Linker

* Conditional assembly

* Macro facility

This manual covers the operation of the
Editor/Assembler/Disassembler/Symbolic Debugger,
and the Assembler pseudo ops.

NOTE: The user 1is expected to be familiar with
Motorola 68000 Assembly Mnemonics, or have a
suitable book available.

This manual refers to version 1.4 of SEKA.

Due to a policy of continual improvement “he
version supplied may be more recent. Any
improvements or changes will be included 1in a
file called READOC.ME, on the disk.

SEXA has been designed to work in 80 column
mode, and although it may ‘be used in either 60 or
80. It will look neater in 80 columns.

Running SEKA

SEKA must be run from a command line, since the
disk appears empty if you 1look at it from the
workbench. If you are in workbench, select the
icon marked CLI (command line interpreter) and
double click on it.

Now run SEKA, 3Jjust type “"seka". It may be
necessary to prefix it with the disk name,
e.g. "df0O:seka". df0: is the built in disk drive.

Workspace

SEKA uses an area of memory as a workspace. It
will prompt for WORKSPACE KB> when it is run, and
will expect a size in K bytes. Ideally this
should be all the memory, which 1is not required
for other tasks, usually about 150K if you are
running nothing else.

Type 150, followed by the Return key.

e.g. WORKSPACE KB>150

Entering Commands
When SEKA runs, the prompt SEKA> is displayed.

From this mode, editor, debugger, and assemble
commands may be entered.

All command lines must end in <RET> (the Return,
or Enter, key).

I R R AR

An exception to this is ending with <Ctrl-P>,
(press the <Ctrl> key and the P key
simultaneously), which redirects the output to
the printer.

Also <ESC» is wused to exit frominsert mode,
modify mode, immediate assembly mode, and the
screen editor. (see I, M, and A commands).

Finally, <«Ctrl-C> will abort the current command,
and return to SEKA command level.

e.g. The P command '‘prints’ lines of text to the
screen, you suffix it with the number of
lines to print, so...

SEKA>P10<RET> prints 10 lines to the screen

SEKA>P10<Ctrl~P> prints 10 lines to the printer

Intra Line Editor

When typing a line of text (before pressing <RET>)
it is possible to delete the last character typed
by pressing <BS> (the BACKSPACE key), as is
common with most systems.

In addition SEKA allows;

- cursor keys <-- and --> to be used to move left
and right.

- deletes the character under the cursor.

¢(RET> or <Ctrl-P> terminates Intra-line editing,
returning the whole line regardless of the cursor
position.

In addition, ' recalls the previous line of text,
which can then be edited, and entered by typing
<RET> (or <Ctrl-P>) again.

e.g. type TEST LNE display TEST LNE
hit <RET>
hit 1* TEST LNE
type ¢<-- <~-- I TEST LINE
hit <RET>

! = Exiting SEKA

To exit, use the ! (Exclamation mark) command.
SEKA will prompt "Exit to system, are you sure?".
Replying Y or Yes to this will exit, loosing

anything you forgot to save.

™

! R R R R R

IITT1

CHAPTER 2

THE PROGRAM EDITOR

SEKA provides two editors for editing the
program (source). The screen editor is easier to
use for most purposes, and that is described
first. For functions such as locating text, use a
command described under LINE EDITOR.

SCREEN EDITOR

The screen editor is very simple and it is
easier to use than the line editor. Note that all
editing is done in the Source Buffer in memory -
there is no concept of editing a disk file.

Type <ESC> in response to SEKA> prompt, to enter
screen edit mode.

All text typed is inserted, cursor keys allow
movement up, down, left, or right. deletes
the character under the <cursor, and <(BS)> deletes
the character to the left, i.e. the character
just typed.

<Ctrl-O> will open a blank line before the
current one.

Pressing <ESC»>» at any time from within the
screen editor will exit to command 1level (the
SEKA> prompt).

CUT & PASTE

In the screen editor, it is possible to cut out
a section of text, and Paste it in zero or more
times.

Initially place the cursor at the BEGINning of
the piece to cut out, and mark it using <Ctrl-B>.
Move the cursor to the end, and type <Ctrl-C> to
CUT it out.

To PASTE, Jjust type <Ctrl-P>. The block last
cut out will be pasted in at the current cursor
position.

Note that leaving screen edit mode, returning
to SEKA> command level, will erase the paste
buffer.

This is useful for:
a) deleting text, Jjust cut it out. No paste.
b) moving text, cut it out, reposition cursor &
paste it in.
c) copying text, cut ot out, paste in
immediately, reposition cursor and paste
in another copy.

THE LINE EDITOR

This section describes the whole line editor
commands. For other commands, see other sections.
Note that within a 1line, the 1Intra-Line editor
may be used - see Chapter 1.

LR R R R EEEEEEE A

Some commands take numeric parameters, which if
omitted default to 1. This parameter is indicated
as n in the below text. The Locate command takes
a textual parameter, terminated by <RET>.

I - Insert text
E - Edit line Tn - Target to line n (default=top)
B - Bottom of buffer

Un - Up n lines

Dn - Down n lines

Pn - Print (to screen) n lines
Zn - Zap (delete) n lines

Lt - Locate text t

L - Locate next occurrance

KS - Kill source

0O - 01d, opposite of KS

H - Howbig are buffers

Note that all editing is done in the Source
Buffer in memory - there is no concept of editing
a disk file.

I - Insert text

The Insert command opens a line at the current
line for more text to be inserted into the source
buffer. A line number will appear, and text can
then be entered. Typing <RET> will end this 1line,
and the next line will open. This is Insert Mode,

and can be exited by typing <ESC> at the start of
a line.

The opened 1line occurs immediately above the
current line, and has the same number. The old
current 1line, and all subsequent lines, are
renumbered to make room for the new line or lines.

{ -_EDIT LINE

Edit allows you to edit the current line.
Editing may be done with the intra-line editor,
and exited by typing <RET>.

Tn - Target to line n

The concept of the current 1line 1is very
important in this editor, and this command allows
the current line to be set.

Just typing T will take the default n=1, or the
top line, and thus T is an easy way to the top of
the buffer.

If you are unsure which line you want - use the
Locate command, or Up and Down commands to move
relative to your current position.

B - Bottom of buffer
This command will take you to the bottom of the
source buffer.

Un - Up n lines

The Up and down commands are useful to move
around the buffer relative to your current
position. Up will take the current position up
(towards the top of the file, or lower numbered
lines) by n lines. The line reached is displayed.

Dn - Down n lines
Down is like up, only you move down n lines.

Pn - Print (display) n lines

Print displays n lines on the screen, starting
at the current line. The last line becomes the new
current line, and thus the current line moves n-1
lines down the buffer. The P command alone (n
defaults to 1) displays the current line.

10

U

[

i
\

To print this on the printer, use the P command
with suffix <Ctrl-P>, see Chapter 1.

Zn - Zap (delete) n lines

The Zap command will delete n lines, starting
ac the current line. The current 1line and
subsegent lines will be deleted, and the
remaining lines renumbered to fill the gap. If the
number of lines is small (<20), then they will be
displayed as they are deleted. Otherwise "Sure?"
will be asked, and Y or Yes should be typed to
Zap the lines. Note: Use this command with
caution, since there is no provision for
recovering lost lines!

t - Locate text t

The locate command allows text to be located
(found). The command will only find one occurence
of the text, but it may be repeated by the
command L, with no text. The search starts at the
line following the current line, so use T first to
go to the top of the buffer if you want to search
he entire buffer. If the text cannot be located,
Not Found is displayed, otherwise the line in

which the text occurs is displayed, and becomes
the current line.

L - Locate next
The L command with no text following, will

locate the next occurrence of the text previously
specified.

11

KS - Kill Source

This command erases the source buffer. The

prompt "Sure?" appears, and typing Y or Yes will
kill it, otherwise "** Not done" is displayed.
Since this command works just by moving the EOF
pointer, and setting an EOF mark, the file can be
recovered using OLD.

0 - 014

This command recovers a source buffer if one
was deleted recently. The first character of the
buffer is forced to ";". The size of source
buffer is displayed if succesful (see HowBig).

H - HowBig are Buffers
This command displays the size of the:

Wor kSpace (WORK),

Linker input buffer (LINK),
Source text buffer (SRC),
Relocation stream code (RELC),
Relocation stream data (RELD),
Object output code (CODE), and
Object output data (DATA).

Each is on a line of its own, and is displayed
as start of file pointer and the end of file
pointer in Hex, and the size of the file in
decimal.

Note that the buffers (except SRC) are only

displayed if they are non-zero size. This is done
to simplify the display.

12

13

65536
246

047C82 047D78

SEKA>H
Work 047B04 057B04

e.qg.
Src

N W O T O T O T T T T T A

|_
l

CHAPTER 3

THE ASSEMBLER
The Assembler has one command: A - Assemble.

The prompt OPTIONS> 1is then displayed, and
simply typing <RET> to this prompt will assemble
normally without listing. See section below on
Listing & Options.

The assembler “"moonlights" as a linker, and
will (by default) take any linker code placed in
the linker input file, and link that, as well as
assembling the source to produce an executable
file - see Linker Section. Normally it is not
necessary to use a linker, and this section, and
the linker input buffer may be ignored.

ASSEMBLY SYNTAX

All 68000 instructions are available with
standard Motorola Mnemonics. Although a summary of
these is given in appendix B, the user is advised
to obtain a book on 68000 programming if he or
she is not already familiar with it. Instructions
may be entered in free format, 1i.e. there is no
need to use TABs to format the code neatly - the
assembler will automatically do this on listing.

A line of code can be considered to consist of 4
fields:

14

N A A A

Label field e.g. LOOP: Must end in a colon.

Operator field e.g. MOVE.B 1Instructions are all

Operand field e.g. DO, (A5 standard Motorola
format.

Comment field e.g. ;Setup Must begin with a
semicolon.

This may be entered in free format, with a
space only required between the operator and
operand fields. For example, the above 1line can
be entered:

LOOP:MOVE.B DO, (A5);Setup

Any or all the fields may be omitted, although
an operand without an operator is meaningless,
and an error message will result.

LABELS/SYMBOLS

A label is just a special kind of symbol, and
the two will be described here together. A symbol
is a name which has an associated value. Unlike
variables in high level languages, the number is
constant. Symbols can be defined in two ways: (a)
by placing it with a colon afterwards, as a
label, it takes on the value of the current
location counter, and can be used to refer to
that location; or (b) by using EQU or = pseudo
ops, see below.

Symbols consist of any number of alphanumeric
letters or numbers, upper or lower case. No
distinction 1is drawn between upper and lower
case, e.g. Help 1is the same as HELP. The first
character of the symbol must be a 1letter. Long
symbols may be truncated on listing. Reserved
words may not be used for symbols.

15

COMMENTS

Comments are ignored by the assembler. They are
preceded by a semicolon (or star), and terminated
by the end of line.

A comment can be preceded by a star ("*") in
the first column, or by a semicolon (";") at any
point in the 1listing. A star in any other
location does not introduce a comment (rather, it
indicates multiplication, or the current location
counter).

When a 1listing 1is requested, the assembler
formats comments which lie on a line of their own
differently to those after an instruction.

NUMERIC EXPRESSIONS

Numbers may be entered in one of four bases, or
as ASCII characters. In addition Labels and
symbols may be freely used, and arithmetic
operators Add, Subtract, Multiply, Divide, And, Or
and Xor (+-*/&!~) may be used to combine these.
Prefix Minus and Not (-~) are also available.

Comparasons may be performed with the operators
equal_to, less_than and greater_than (=<>), which
return a value of 0 if false and 1 1if true.
Square brackets [] may be used to indicate
ordering of arithmetic, otherwise the operations
are performed strictly in the order in which they
are entered.

16

rfﬂfﬁfﬂfﬂlﬁ!l".!ﬂ[ﬁ!ﬂﬂ'.[ﬂﬂH[ﬂﬂﬂﬂﬁtﬂﬂtﬁﬂ'ﬂ'\\'

The four bases allowed are: Decimal,
Hexadecimal, Octal, and Binary. Default are
decimal numbers, Hex require a $ prefix, Octal an
@ prefix, and Binary require a % prefix.

ASCII constants need to be placed in a pair of
single or double quotes, e.g. ‘A‘, ‘AB'’, ‘ABC’, or
‘ABCD’. Where more than one character is placed
inside the quote marks, the first character £fills
the more significant byte, etc, and the last
character is allocated the least significant byte.
i.e. the characters are packed at the bottom of
the word or longword. "ABC" = $00414243. Thus a
MOVE.B £'A’,DO0 and MOVE.L £'A’,D0O will both place
an ‘A’ in the low byte of DO.

The location counter is represented by *, and
may be used freely to represent its current value.
NB: * represents the current location counter,
not the value at the start of instruction! Beware
of DBRA DO,* !! However, *(PC) will give the
anticipated result, as will DC.W HERE-*, THERE-*
which is the same as DC.W HERE-* followed by DC.W
THERE-*

17

S ———

LISTING & OPTIONS

When the prompt OPTIONS> appears, none or more
options can be specified.

Options V, E, and P

Listing can be sent to the screen by entering
Vv for wvideo. A formatted 1listing will be
produced. A *“P" (or “E”) option will send the
formatted listing to the Printer - a listing name
will be prompted for. For neatness, it is best to
assemble without 1listing until errors have been
removed. If no device is specified, no listing is
produced.

Option "H" will direct the 1listing to hold
between pages, which is useful both on screen, and
with manually sheet fed printers. Continue by
hitting any key.

Option "o will optimize branches. Only
branches with no .S or .L are optimised, if you
deliberately use .L the assembler assumes you
have a reason! Note that this modifies the source,
it adds ".S". Note that option "O* takes a long
time by SEKA standards, it is NOT recommended and
can cause strange effects sometimes.

All short branches that are out of range are
automatically upgraded by SEKA to .L branches, and
a warning message is produced. This occurs
whether or not option "O" is specified.

Option “L" will produce linkable code, see the
Linker section later in this manual.

18

A

A symbol table is produced as standard, when
listing 1is requested. Entries are of the form
NAME...VALUE, with a "+" sign after the value
signifying a relocatable or external name. If the
name is a Macro name, -MACRO- is displayed instead
of a wvalue.

Errors raised in the assembly (except warnings
generated by changing .S branch to .L) are treated
as fatal 1if no 1listing has been requested,
otherwise all the errors are listed. When the
assembler stops on error, the current line is set
to the one which contains the error, to aid rapid
correction.

It is recommended to assemble without listing
until all assembly errors have been removed,
uniless a 1listing with errors is deliberately
required. Most users find that the Stop-on-error-
with-quick-edit-and-reassemble approach 1is easy
and simple to use.

More than one option can be specified on the
OPTIONS line:

e.g SEKA>A

OPTIONS>VH will 1list to screen, holding
between pages.

19

PSEUDO OPERATORS

Pseudo operators (pseudo ops for short) are
assembler directives. They do not usually generate
code, but instead affect the operation of the
assembler.

Three pseudo ops do generate code: DC.B, DC.W
and DC.L will generate Byte(s), Word(s) or
Longword(s) containing the value of the
arguments. BLK will leave space for data tables,
etc. It takes one or two parameters, the first is
the space in bytes (or words, or longwords if .W
or .L suffixes are attatched), the second the
desired fill value.

Code generation begins at an origin. This can
be relative code, at which case the code begins at
relative 0 - the CODE and DATA pseudo ©OpP; Or
absolute code, in which case the code has a
prespecified start address - specified by the ORG
directive. Assembling straight into memory will
occur automatically with relative code, but after
an ORG a LOAD directive must be included in the
source code. This specifies the address in memory
to load the code - and is usually the same as the
ORG address.

The assembler will stop assembling the source

file when it meets an END directive, or at the end
of file.

20

A U U U U

TABLE OF PSEUDO OPERATORS

DC

BLK

ORG

LOAD

CODE

DATA

EVEN

OoDD

Defines a byte, word, or longword in
the object code. More than one number
may be placed after the directive,
separated by commas. In addition,
messages may be placed after the DC.B
directive, in single or double quotes.
Default size=.B

Defines a block of memory. The first
parameter specifies the size of the
block, and the second the value to
fill it with. If the second is omitted,
it is undefined. Default size=.B

Takes a single parameter - the address
to start assembling at. Switches on
Absolute code mode.

Takes a single parameter - the address
to start loading into memory from. Only
works in Absolute code mode.

Switches on Relative mode, Code
segment.

Relative mode, Data (uninitiallized)
segment. (note that some assemblers
call this BSS).

Forces the address even. If odd,defines
a byte.

Forces the address odd. If even,
defines a byte.

21

END

EQU

LIST

NLIST

PAGE

22

Ends the assembly process.

Both EQU and = can be used to seta
symbol to a value. The symbol
name is entered, Zfollowed by a
colon, as normal, and then by

EQU. Instead of taking on the value of
the Location Counter, the symbol takes
on the value of the expression after
EQU.

Identical to EQU, only no colon is
needed after the symbol name.

Turns listing on. Note 1listings are
only produced if a E, P, or V option is
given to OPTIONS>. It may also be
used with a parameter to selectively
enable Listing of Macro Calls (LIST C)
Macro definitions (LIST D) Macro
Expansions (LIST E) and Code extensions
(LIST X).

Turns listing off. May also be used
with a parameter to switch off listing
of the items specified in LIST.

Forces a new listing page. The PAGE
directive 1lists on the first line of
the new page.

R R R R R

IF

IFB

ELSE

ENDIF

MACRO

ENDM

Conditional assembly - takes a numeric
expression, which if it evaluatesto 0
(False) does not assemble the

following lines, and if non zero (True)
assembles the following 1lines. See
ELSE and ENDIF. May be nested to 8
levels.

If Blank usually takes a macro
argument, and is true if the argument
is blank, (i.e. null). e.g. IFB 22

Toggles the conditional assembly
condition, i.e. 1if assembling, ceases
to assemble and vice versa.

Terminates the conditional assembly
block.

A symbol given before the macro op
becomes the name of the macro, and it
may be called by typing that name,
followed by a list of arguments,
separated by commas. The code of the
macro (its definition) follow on
subsequent lines, and assembly 1is
turned off.

Ends a macro definition, and restores
assembly.

23

?n

?0

GLOBL

PWID

PLEN

PINIT

ILLEGAL

24

Reguests that the macro argament n 1is
used at this point. Valid only in macro
definitions. n=1 thru 9

Generates three digits, unique for
every macro call. May be used to create
local 1labels (e.g. X?0). Vvalid only in
macro definitions.

Takes a list of symbols which are to be
treated as globals - see linker
section. Must be the first operator
in the file. May only be used with the
"L" option.

Sets the printer page width for
listings. default 80.

Sets the printer page length. The
default is 66 lines.

Sets a code sequence to initialize the
printer, useful to set 132 columns, USA
font (with £), etc. e.g. for Epson to
set 132 columns... PINIT 15

Note the above 3 are ignored if printer
listing not requested.

Generates an illegal instruction,useful
for causing exit to the SEKA debugger
(or other debug system). 1identical to
DC.W $4AFC.

(o U L U U

[

LINE

ALIGN

A)

Generate calls to emulator traps, e.g.
LINE A $123 is LINE_F) identical to
DC.W SAl23.

Will align the object to an n byte
boundary;ALIGN 2 1is identical to EVEN,
ALIGN 4 1longword aligns. Only powers
of 2 give sensible results. (i.e. 2, 4,
8, 16, etc).

25

CHAPTER 4
SYMBOLIC DEBUGGER

The symbolic debugger is a built in Machine
code monitor with extensive use of the
assembler's facilities, such as symbol table
access, arithmetic operations, and input in any
base. In addition, the debugger offers a
disassembler, a line assembler, trace, multiple
breakpoints as well as examine/modify registers
& memory, fill, copy, search etc.

X - Xamine all registers

Xr - Xamine/Modify register r

Gn - Goto address n

Jn - Jump to subroutine at n
Qsn- Query (examine) memory at n
Nn - mNemonics of memory at n

An - Assemble immediate at n
Msn- Modify/Examine memory at n
Sn - Single step, n steps

Fs - Fill memory (bytes)

C - Copy memory

? - Display value of expression Y - VDU

26

PSR ST

Various default values apply 1if the numeric
parameter is omitted from the commands above. In
the case of Single Step, the default 1is 1.
Goto, and Jump to Subr, default to the current
PC. The memory addresses in Q, N, M, and O, all
default to the 1last used address of one of the
four (the current object location). In
addition, a size can be specified for F, Q, and
M. This will default to Byte, but .W or .L can
be specified for Word or Longword operations.

X- Xamine registers
The 8 data, 8 address, PC, SR, USP and SSP
registers are displayed. The flags indicated by

bits 1in the status register are explicitly
displayed and the current instruction (i.e. the
one which would be executed next) is

disassembled and displayed.

The format of the display is:
D0=00000000 00000000 00000000 00000000
D4=00000000 00000000 0OOOOOOO 0OOOOOOO
A0=00000000 00000000 OOOOOOOO 0OOOOOOOO
A4=00000000 00000000 0000000 00000000
SSP=00000000 USP=00000000

SR=A31F tsxnzvc PC=000000 BR $000008

Across the top 1line are the 8 data registers,
po, bni, b2, b3, D4, D5, D6, and D7.

27

The next 1line displays the Address registers,
AO, Al, A2 A3, A4, AS, A6 and the stack pointer
- A7 -~ which 1is the User or Supervisor SP
depending on the 'S’ bit in the Status Register.
The third 1line displays the two stack pointers,
the status register word, the flags set in the
status register, the program counter, and the
instruction at which it points.

Xr - Xamine/Modify register

The register 1indicated by r 1s displayed, and
the <contents can be altered. To alter the
number, just type in the new value, followed by
<RET>, and the new value will be displayed. If
no change is required, just type <RET>. All
registers are 32 bits except for SR, which is
16. SP and A7 refer to USP or SSP, depending on
the S bit of the status register.
Valid registers are:

DO .. D7 Data registers

A0 .. A7 Address registers

SP Stack pointer (=A7)

USP UserStack pointer

SISP Supervisor Stack pointer
SR Status Register (16 bit)
PC Program Counter

28

In addition the following pointers can be
examined and modified:

SOF the start of source pointer;
SOL start of link pointer

EOF the end of source pointer;
EOL end of link pointer

Gn - Goto address n

The address n is placed in the program counter,
If n is not ‘given, the PC remains unchanged.
Breakpoints are prompted for, up to 8 in all.
To set a breakpoint, just type in the address
after the prompt. Typing <RET> after a prompt
sets mo breakpoint, and begins to execute the
code from the address in PC.

Ja ~ Jump to Subroutine

See G above, only a return address is placed on
the stack (If SR=User mode, USP. If
SR=Supervisor mode, SSP). The stacks are reset,
thus any information previously on the stack is
lost .Note that on return, the PC points to an
ILLEGAL instruction, somewhere in the heart of
SEKRA. This is correct, it’'s used as a
breakpoint. Since the RTS instruction looses the
value of PC before return, there is no way to
tell if you exited via a normal exit or not.

29

AU U U

—— ———

Qsn - Query memory

128 bytes, 64 words, or 32 longwords of memory
are displayed in Hex starting at n, or
defaulting to the current object location. The
current object location is advanced to the
address one after the last byte. The Ascii
characters represented by this are displayed on
the right of the hex display.

Nn - mNemonics

16 lines of code are disassembled to the screen,
starting at n, or defaulting to the current
object location. The current object location is
advanced to one past the last address
displayed. See section on DISASSEMBLER, below.

An - Assemble immediate

The address n is displayed, and the user is in
immediate assembly mode. An instruction may be
entered, and it will be assembled directly into
memory, and the next address will be displayed.
The mode may be exited by typing <ESC>. If an
error is made in the mnemonic, an error message
will be displayed, and the mode exited. Note:
It is not possible to omit n for this command,
but ,"A*" may be typed, to indicate to assemble
from the current location.

30

A A U U U

Msn - Modify/Examine memory

The address n, defaulting to the current object
location is displayed, and the contents of the
byte, word or longword is also displayed. To
modify this location, simply type in the desired
value, and the displayed memory will update
itself. To advance to the next location, type
just <RET>. To exit to SEKA command mode, type
<ESC>.

Sn - Single step

The S command will single step the program,
using the Trace facility on the 68000. If n is
specified, n steps will be performed before
reporting back to the debugger. The PC must be
set up beforehand, either as a result of a
previous S or G command, or as a result of an
explicit XPC.

STEP will not trace through TRAP calls or LINE-A
LINE-F <calls since these will usually be calls
to the operating system. This is done
automatically by STEP by placing a breakpoint
after the call.

Fs - Fill

Three parameters will be prompted for, BEGIN,
END, and DATA. The data byte, word, or longword
will be filled in between BEGIN up to, but not
including END.

31

T Y W — W —

C - Copy

Three parameters will be prompted for. BEGIN,
END, and DESTINATION. The memory will be copied
from the area BEGIN up to but not including
END, to the area starting at DEST. The copy is
an ’'Intellegent’ copy, and will not overwrite
the data it is copying even if the destination
area overlaps the source area.

? - Display value

The expression or value after the ? will be
evaluvated, and the result displayed in decimal
and Hexadecimal. This is useful for everything
from examining the value of a symbol, to
performing calculations. It can also be used to
convert from one base to another.

Y - VDU
This enters a simple VDU mode, where the screen
and keyboard communicate with a device on the

serial line, using default baud rate &
characteristics set on power up or other
initialization program. Exit by typing
<Ctrl-C»>. Note: (Ctrl-C», <Ctrl-s», and

<Ctrl-Q> are interpreted in their normal
context, and not sent down the serial line.

32

RIGASSEMBLER

A standard feature of SEKA 1is a simple line
disassembler, fully integrated with the main
assembler package. The Mnemonics used are
standard Motorola - just like the assembler. The
disassembler is invoked by the command N (for
mNemonics) followed by an address. 16 lines of
code are displayed.

The disassembler can disassemble all 68000
instructions, but is not defined for invalid
instructions. It should always be remembered
that some areas of memory are data areas, and do
not contain valid code. Disassembling these can
give incorrect instructions - you have been
warned!

Although its primary function 1is as a debugging
aid, it can be used to disassemble blocks of
code. This can be a slow process, but the line
disassembler is preferable to none. It should be
remembered that some 1instructions can display
differently to the instruction typed into the
assembler. All numbers and addresses are
disassembled in hex, and although .B .W and .L
suffixes are sometimes added in places where
they could be omitted, in wunambiguous places

they are often not displayed. Instructions
where the assembler has used a Quick form, etc,
are displayed as such. In addition,
instructions such as EXG can display the
registers in either order - the function is
identical.

33

CHAPTER §
LOADING AND SAVING
The filing commands are:

R read source file W write source file
WO write object file
RL read linker file WL write linker file
RI read image WI write image
\Y view directory
KF kill file > copy output to file

V - View Directory
will display the directory in the form:
nnnnn Blocks Used mmmmm Blocks free

eses fffff eses fffff essss fffff
eess fffff eess fffff eess fffff
eses fffff eess fffff essss fffff

where nnnnn and mmmmm are space used and free on
the entire disk, and ssss is the size (in bytes)
of file fffff. The command may be suffixed by a
directory name, otherwise it will display the
current directory.

When a directory is specified with View, it
attaches to the directory (i.e. makes it the
current one), and then displays it.

KF - Kill file

KF will prompt for a file name and delete that
disk file if it exists.

34

e et e A e

R/ source

Prompt for filename (default extension .S). Read
will read the file into the current location in
the source buffer - for overwrite simply kill
the source first (KS). Write will write the
whole source buffer to the file.

<Ctrl-w>

From screen editor, it is possible to output the
current paste buffer to disk by typing <Ctrl-w>.
A filename will be prompted for. Default
extension is .S, since it is a source file. To
read it back in, use the R command.

WO object

Prompt for filename (no default extension). WO
will save the object on disk, with a header and
relocation information: this is the usual way
of saving an executable file.

RL/WL link

Prompt for filename (Default extension .LNK).
See linker section. WL will write a linkable
file FROM OBJ BUFFER. This can be used after an
Assemble Option>L to save the linkable code
produced. RL will read a disk file and append it
to the 1link buffer. Use KL to kill the 1link
area if necessary. Many files may be read into
the 1link buffer and linked together. See also
CL.

35

RI/WI image

For flexibility, these commands will allow a
data or other file to be read in or written out.
Both prompt for filename and start/stop
addresses. On read: put STOP as -1 for entire
file.

> copy output to disk

Prompts for FILENAME. Will subsequently copy
anything which appears on the display/printer to
the specified file on disk. Finish the
operation with either another "»>" command, or by
exiting SEKA.

Note on filenames If no name is specified when

FILENAME 1is prompted for, the operation is
aborted and "** Not Done" is displayed.

36

LA U

CHAPTER 6

LINKER

Convel assemblers produce linkable code which
then needs to be linked by a linker to produce
executable code, even if no additional modules
need to be linked in.

SEKA is different. The assembler can produce
either executable code, or linker code, and for
small programs there 1is no need to use a
linker. Since the assembler will accept either
standard 68000 source code or linker code, it
can act as a linker, linking modules of
linkable code (which have been loaded into the
LINK buffer), and producing executable code.

A novel "extra" SEKA provides is the ability to
link modules of linkable code AND assemble a
source AT THE SAME TIME, so enabling one module
to be worked upon - and small changes made -
and the results of tests to be seen very
rapidly.

The ‘L' option on the assembler command controls
the OUTPUT: default is executable, with L option
gives Linkable output.By default both link input
and source input files are taken by the
Assembler/linker, but when L is specified, the
Link input file is not input (since link input
=> link output is not allowed).

37

Assembling with linkable output
Use the A command, with L option:

link buffer

CODE BUFFER
(link code)

Note that the Link buffer remains unused and
unaltered.

Linking

Kill the SOURCE. Use the A command without L
option:

source
buffer

Note that the source buffer must be zero size,

unless it is desired to assemble as well as
linking.

38

1t e

Assenble & Link
Use the A command without L option:

R CO DS

CL - Copy Obj to Link input buffer

Use this after an assemble-option-L to place the
linkable code in the link input buffer, ready
for a link. Prompts “Sure?" because it DELETES
THE SOURCE buffer!! Beware!

CL, like RL, appends to the Link input buffer, (as
to overwriting, see KL).

KL - Kill Linker Buffer
Kills linker buffer. Prompts "Sure?"“.

39

RL and WL

See Filing Section. WL can be used (instead of
CL, or possibly in addition to), to save the
linkable file assembled into the OBJ buffer. RL
can be used to read in linkable files - these
are read in to the LINK INPUT BUFFER. Note: RL
Prompts "Sure?" because it DELETES THE SOURCE!

RL, 1like CL, appends to the Link input buffer,
(as opposed to overwriting, see KL).

Relocation Modes - a clarification

All arithmetic can contain externals or
relocatables, providing the result is absolute,
relocatable or external, and not a composite of
these (like REL+REL or EXTERN-REL).

e.g. HERE: DC.L THERE-HERE
THERE:

is valid, and the result 1is absolute (a pure
number) .

Similarly BRA HERE does an implied HERE-* (* is
the current location counter, initially Code
Relocatable) and is OK if HERE 1is a label to
the same REL section of the program.

BUT: BRA EXTERN will attempt to calculate
EXTERN-*. (EXT-REL), and
will fail with an error.

Use JMP EXTERN

In practise don‘t worry - until you get a

relocation mode error.

40

e e e e e

CHAPTER ?

This section leads the novice user through a
simple program, which will help to understand
the simple and easy to use features of SEKA.

Output characters to screen

Type the following underlined sections into
SEKA. The non-underlined sections represent
output given as a result of the commands typed
(note that addresses may differ on different
versions of the machine or operating system):

Note that the file is shown being entered with
the I command on the line editor. Most users
find it easiest. to type <ESC> and use the
Screen editor, but it is easier to show the 1
command in the examples here.

41

—
N

25
SE
Wo
Sr
SE

WORKSPACE KB>150
SEKA>h
Work 02EB48 054348 153600
Src 02EB4E 02EB4E 0
SEKA>1i
1 ;Program to print some characters on screen
2
3 start:move.l execbase,a6;Open DOS library
4 lea dosname,ail
5 jsr OpenLib(a6)
6 move.l dO0,a6;Base of AmigaDOS
7 jsr Output(a6);get output stream
8 move.l d0,d1
; 9 move.l £buf,d2

moveq f£bufsiz,d3
jsr Write(a6);Write text to screen

clr d1

end:jsr Exit(aé6)

align 4;Align to longword
dosname:dc ‘dos.library’,0
align 4

buf:dc 'Hello World’,LF,0
bufsiz = *-buf

end

<ESC>
KA>h

rk 02EB48 054348 153600
c O02EB4E 02ECDE 400
KA>

42

l

U

Now the main part of the program has been typed
in, but the equates for the libraries reside in

a file on disk, called AmigaDOS.i. Read this '
into the file, at, say line 2.

SEKA>t2
2
SEKA»>r
FILENAME >amigados.i
SEKA >

now lets assemble the source... no options for
just assembling.

SEKA>a
OPTIONS>
** Undefined Symbol
46 buf:dc ‘Hello World’',LF,O0
SEKA>

It stopped on an error. Something is undefined.
Come to think of 1it, we never did define LF did
we? Lets do so.

The cursor is currently positioned on the line
with the error. Lets put the definition on the
line before. (the I command inserts before)...

43

SEKA>i

46 LF=10

47 <(ESC>
SEKA»>a
OPTIONS>
No Errors
SEKA>h
Work 02EB48 054348 153600
Src 02EB4E 02EES5S6 776
RelC 02F19C 02F1AC 16
RelD 02F1BO 02F1BS8 8
Code 02F1C8 02F210 72
SEKA>

don’'t be upset by the sudden increase 1in
complexity of the Howbig command. What 1it’s
trying to tell you 1is that there is now some
object code in the CODE buffer (plus information
about how to relocate it, should you save it to
disk, and reload it in another location - this
is stored in RELC and RELD).

Well, since it’'s there, lets look at it... we
can do this by using a label - remember START:
? First, use the N command to get mNemonics.

SEKA>n start

02F1C8 MOVE.L $000004.L, A6

02F1CE LEA $02F1F4.L,Al

02F1D4 JSR SFE68(A6)

alternatively, we can look at the machine code
itself, using Q (Query Memory). This has Byte,
Word, or Longword options. Lets use the Word
option.

14

e e

SEKOq.w start

02F1C8 2c79 0000 0004 43F9 D002 F1F4 4A4E FEGB ,y....Cy..qtN."h
02F1D8 2€40 4EAE FFC4 2200 243C 0002 F200 760D ,aN..D" . $<..r.v.
02F1EB 4EAE FFDO 4241 4EAE FF7Q FFFF 646F 732E N..PBAN..p..dos.
02F1FB 6C69 6272 6172 7900 4845 6C6C 6F20 ST6F Library.Hello Wo
02F208 726C 640A 0000 0000 000C 0000 0000 0000 rid.............
02F218 0000 0000 0000 0000 0000 0000 0000 0000c.c...
02F228 0000 0000 0000 0000 0000 0000 0000 0000cenw.w.
02r238 0000 0000 0000 0000 0000 0000 0000 0000cvven

Well, at least I can make out "dos.library" and
"Hello World" in there. Probably a good sign.

Another way to see what the code looks like is
to get an assembly 1listing, e.qg.

SEKA>A

OPTION>V (or option P for printer)

anyway, back to the matter in hand... we have an
untested program. Lets save it before we try

and run it! Place a blank, formatted disk in
the main disk drive.

45

|

SEKA>vdfO:
0 blocks used 1758 blocks free
** No files
SEKA>w
FILENAME>hi
SEKA>v
2 blocks used 1756 blocks free
777 hi.s |
SEKA>

Now it's securely stored, immune to crashes
(well, 1if you take the disk out of the drive,
it would be!), we can try to run it.

Remember it starts at START, and ends at END
(were it normally EXIT’'s back to the operating
system).

SEKA>g start
BREAKPT>end
BREAKPT)>

00=00000000 QOOADAND 0002F280 0ODOO00D O4=0ONNINC ADOMID ODQ0000 0000000C
A0=00000000 OOOR3820 COONN0 AEIXID0 A<xXIXIND (MEXINO0 00C920E 00024 12E
SSP=000250CE USP=CDO2412E SR=0004 z PC=02F29€ JSR $FFTD(AS)

SEKA>

What happened to the message? well, it was sent
to the default output device, which 1is still
the system window. The SEKA window does not
alter this. So flip back to the system window...

46

AR i i

Good. It seems to work.

Lets save the object program, so
from the system.

SEKA>wo

FILENAME>hi

SERA> !

Exit to system, sure? y

it can be run

47

—— e —

APPENDIX A
AmigaDos Introduction
The Amiga operating system is quite complex if
you want to wuse it to its full extent, but the
outermost DOS level 1is quite simple, and
explained briefly here.

All calls to the DOS are by JSR calls to an
address made up of a base address (the address
of the library) and an offset. All offsets are
negative. Since the base address varies, we have
to call another routine to find where it is. It
will never vary during the running of your
program, but might from one run to the next.

Only two libraries need to be used: "EXEC" the
most primative library, which contains calls to
open all the others, and "dos.library", the DOS
library.

The EXEC library

The base of the EXEC library 1is to be found in
location 4 (which we will call ExecBase for
neatness). This is the only pre-ordained value
in the entire system. Once that value has been
picked up, and by convention placed in address
register 6, A6, (this is essential, since some
of the 1libraries assume that it is there and
call other routinest), then the call OpenLib(A6)
can be made to. open other libraries.

48

EER R R e e e

Openlib (offset -408) requires a library name
string in Al, and returns the new library base
in DO.

e.qg.
move .L ExecBase , A6

lea dosname,Al ;Library name

jsr OpenLib(A6) ;call Exec’'s OpenLib routine
move.L DO,dosbase ;to get the base of AmigaDOS

library

note: the labels ExecBase and Openlib are to be
found 1in the AmigaDOS.i equates file on the
disk.

The AmigaDOS library

This library is like the DOS on a normal small
computer system. It allows input and output to
files or other devices, but does not have
facilities to access graphics, or sound. These
must be accessed via the rest of the operating
system - the other 1libraries. See your Amiga
dealer for more information.

All calls to AmigaDos take the same form as the
EXEC call, OpenlLib. There is a table of the
offsets on the disk in the file "AmigaDOS.i".
These offsets must be applied to the AmigaDOS
base, not the EXEC base (see example below).

The table below sets out - very briefly - the
function of the routines, and lists the
parameters they require, and the values they
return.

49

s e S e - e~

Parameters are passed to the routines in Data
registers, the first parameter in D1, the second
in D2, etc. All returned values are returned in
DO.

The table is set out below as:
Routine(D1, D2, D3, ...) : result_in_doO
mnemonic names are given to the parameters and

the result for descriptive value, notes on
these names are to be found below.

AmigaDOS functions

Open(name mode) : Handle Opens a file.
Close(handle) Closes an open
file.

Read(handle,buffer,maxsize)
: size Reads a block

Write(handle,buffer,size)
:size Writes a block

Input() : handle Returns the
default input

Output() : handle Returns the
default output

50

A

Seek(handle,position,mode)

oldpos

Delete(name) : success

Rename(oldname, newname)
success

Lock(name,mode) : lock

UnLock(lock)

DuplLock(lock) : lock

Examine(lock,infobuff)
success

ExNext(lock,infobuff
success

CurrDir(lock) : oldlock

Exit(returncode)

Positions file
pointer

Deletes file or
directory

Renames a file

Obtains a lock on
a file

Releases the lock
Returns a

duplicate lock

Finds first
file in lock

Examines the next
file

Sets the current
directory

Exits to the
system

51

WaitForCh(handle,timeout)
¢ success Waits for a
character

note: there are other AmigaDOS calls, but these
are the most wuseful ones. Note all I/O must go
through READ and WRITE, even interactive
channels to the keyboard and screen.

Notes on AmigaDOS calls

handle A file hand.e is returned from
Open, and used by other file
routines. A return of 0

indicated Open failed.

lock A lock 1s & bit like a handle.
Since 1t is cheaper to obtain
a4 lock on a file, than it is
to open one, wuse LOCK if you
just want to check it exists.

name A pointer to a null terminated
file name.

52

IR R

mode

position

infobuff

success

buffer

for open ... use 1005 for

oldfiles,

1006 for newfiles.

for 1lock ... use -2 for
shareable locks.

for seek ... use -1 for

Position relative to file
start

0 for Position relative to
current

1 for Position relative to
file end

A (possible negative)
character position in file. It
may be relative to the file
start, end, or current
position, see above entry for
mode.

The Examine/ExNext commands
return lots of useful
information. The block must be
longword aligned.

Zero for fail. nonzero for
success.

Read and Write require a
pointer to a buffer containing
the data, even if it is just a
single character.

53

gize

timeout

54

The size of the buffer. Read
returns the actual size read,
and write returns the actual
size written (which only
differs if the disk is full,
or other error).

A time in microseconds.

Cbo b b s e e b

ABC

ADD ADDA ADDI
ADDQ
ADDX

AND ANDI
ASL

ASR

Bcc

BRA BR
BSR
BCHG
BCLR
BSET
BTST

CHK

CMP CMPA CMPI
CMPM
DBcc
DBRA DBR
DIV

DIVU

EOR EORI
EXG

EXT

JMP

JSR

LEA
LINK

LSL

LSR

MOVE

APPENDIX B
Instruction Set Summary

. BWL
.BWL
.BWL
.BWL
.BWL
.BWL

. BWL
.BWL

. BWL

WL

. BWL
.BWL
.BWL

. BWL
. BWL

. BWL
. BWL

.BWL
.BWL
.BWL
.BWL

STOP

SUB SUBA SUBI .BWL
SUBQ « BWL
SUBX . BWL
SWAP
TAS
TRAP
TRAPV
TST
UNLK

Mnemonics on same line are synonyms.

55

e R

0 O

CcC
T vC
F Vs
HI PL
LS MI
CC HS GE
Cs Lo LT
NE GT
EQ LE I

Dn d.w
An d
(An) d(PC)
(An)+ d(PC, xn)
-(An) £d
d(An) SR
d(An,xn) CCR

USP

Please refer to a suitable reference book for
further details, Motorola 68000 Users Manual
(Motorola) or Leventhal & Kane "“68000
Microprocessor" (Osborne/McGrawHill)

56

1

R R

APPENDIX X
Summary of all Commands
! - Exit to system Chapter 1
> - Set output file Filing
?n - Display value. Debugger
A - Assemble file. Assembler
An - Assemble immediate. Debugger
B - Bottom of file. Editor
C - Copy memory. Debugger
CL - Copy linkable code. Linker
Dn - Down n lines. Editor
B - Edit current line. Editor
Fs - Fill memory bytes. Debugger
Gn - Goto address n. Debugger
H - Howbig is file. Editor
I - Insert at current line. Editor
Jn - Jump to subroutine. Debugger
KS - Kill source buffer. Editor
KL - Kill linker buffer. Linker
KF - Kill Pile. Filing
Lt - Locate text. Editor
Msn- Modify/Examine memory. Debugger
Nn - mNemonics. Debugger
O - 01d source. Editor
Pn - Print n lines. Editor
Qsn~ Query (display) memory. Debugger
R - Read file. Filing
Sn - Single step, n times. Debugger
Tn - Target to line n. Editor
Un - Up n lines. Editor
Vd - View directory. Filing
W - Write file to disk. Filing

57

X - Xamine registers Debugger -
Xr Xamine/Modify registers. Debugger

Y - VDU. Debugger —
Zn Zap n lines.Editor

8§ = size (.B .W .LB. Default=.B -

n = number (e.g. $100, LABEL+2). -
Default=1 or previous

d = directory (e.g. DFl:C)Default=Default
directory

t = text to be located. Default=previous
t

r = register name (e.g. DO)

Note: All ranges given by START STOP are
exclusive of the STOP address,

e.g. START>5 STOP>8 means 5, 6 and 7

Screen editor

<Ctrl-B> Begin block Editor
<Ctrl-C Cut Block Editor
<Ctrl-pm Paste block Editor
<Ctrl-w> Write block to disk Filing -
Cursor Keys Move

 and <BS> Delete right and left.

58

| e

